Linear Programming

Definitions and Properties (cont.)

An LP is in the augmented form if all the variables are nonnegative and all the functional constraints are equations (built with slack/surplus variables, if necessary).

An augmented solution is a solution for an LP problem in the augmented form.

Property 5: Every LP problem can be rewritten as an equivalent problem in the maximisation augmented form.

Proof (writing an LP problem as a maximisation augmented form problem)
(i) $\operatorname{Min} Z=\sum_{j=1}^{n} c_{j} x_{j} \quad \rightarrow \quad \operatorname{Max}(-Z)=\sum_{j=1}^{n}\left(-c_{j}\right) x_{j} \quad(\operatorname{Min} Z=-\operatorname{Max}(-Z))$
(ii) ' \leq ' constraint: $\sum_{j=l}^{n} a_{i j} x_{j} \leq b_{i} \Leftrightarrow \sum_{j=l}^{n} a_{i j} x_{j}+x_{n+i}=b_{i} \wedge x_{n+i} \geq 0$
(iii) ' \geq ' constraint: $\sum_{j=1}^{n} a_{k j} x_{j} \geq b_{k} \Leftrightarrow \sum_{j=1}^{n} a_{k j} x_{j}-x_{n+k}=b_{k} \wedge x_{n+k} \geq 0$
(iv) nonpositive variable: $x_{j} \leq 0 \Leftrightarrow x_{j}^{\prime}=-x_{j} \geq 0$
(v) free variable: x_{j} free $\Rightarrow x_{j}=x_{j}^{\prime}-x_{j}^{\prime \prime}$, with $\left\{\begin{array}{l}x_{j}^{\prime}=\operatorname{Max}\left\{0 ; x_{j}\right\} \geq 0 \\ x_{j}^{\prime \prime}=\operatorname{Max}\left\{0 ;-x_{j}\right\} \geq 0\end{array}\right.$

Consider a problem with m equations and $\ell(>m)$ nonnegative variables. A basic feasible solution (BFS) is a solution for the problem that is obtained by setting $\ell-m$ variables equal to zero - nonbasic variables (NBV) - and solving the resulting system for the remaining m variables - basic variables (BV) - in case this system is feasible and determined, and with a nonnegative solution.

Each BFS is associated with a single corner point of the feasible region, named corner point feasible solution (CPF). Each CPF is associated with at least one BFS.

Two BFSs are adjacent if all but one of their basic variables are the same (consequently, the respective sets of nonbasic variables also differ by one single variable).

Solving LP problems

Simplex algorithm (George Dantzig, 1947)

Let us consider an LP problem in the standard form ${ }^{(1)}$ and with nonnegative right-hand-sides (RHS).

Step 1: write the problem in the augmented form
Step 2: determine a BFS
set $k \leftarrow 1$
\{Iteration k\}
Step 3: if the BFS is optimal then stop otherwise, continue

Step 4: apply the "entering criterion" to select x_{p}, the new BV apply the "leaving criterion"
if not possible then stop (unbounded OF)
otherwise, let x_{r} be the new NBV
Step 5: update the new Simplex tableau thus building the new BFS (exchange variables x_{p} and x_{r})
set $k \leftarrow k+1$
go to step 3

Notes:
entering criterion - select among the variables with negative coefficient at the OF row, the one with the most negative coefficient (variable x_{p}).
leaving criterion - in other to guarantee the feasibility of the new BFS, calculate the minimum of the ratios of the RHS and the positive coefficients of the entering column (variable x_{p}). The variable associated with that minimum $\left(x_{r}\right)$ will be nonbasic in the new solution.

[^0]
[^0]: ${ }^{(1)}$ The Simplex algorithm can be adapted to any LP problem.

